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Abstract. The thermodynamic properties of bosons moving in a harmonic trap in an arbitrary number of
dimensions are investigated in the grand canonical, canonical and microcanonical ensembles by applying
combinatorial techniques developed earlier in statistical nuclear fragmentation models. Thermodynamic
functions such as the energy and specific heat are computed exactly in these ensembles. The occupation
of the ground or condensed state is also obtained exactly, and signals clearly the phase transition. The
application of these techniques to fermionic systems is also briefly discussed.

PACS. 03.75.Fi Phase coherent atomic ensemble (Bose condensation)

1 Introduction

Recently there has been a renewed interest in the ther-
modynamics of mesoscopic systems. In particular, the
experimental observation of condensation phenomena in
nanokelvin aggregates of atoms moving in magnetic
traps [1–4] has encouraged a number of theoretical in-
vestigations of this phenomenon [5–7] extending earlier
investigations [8–10]. These works assume that the sys-
tems can be adequately described by the grand canonical
ensemble in which both the energy and particle number
are allowed to fluctuate, and use the harmonic oscillator
potential as suggested in [11]. The canonical ensemble is
probably more representative of the experimental condi-
tions and has also been investigated [12–15].

In this work, we analyze the thermodynamics of bosons
in the the grand canonical, canonical and microcanoni-
cal ensembles by applying particularly effective techniques
that two of us have used before in describing nuclear sys-
tems statistically [16–18]. This reproduces the recursive
formula for the canonical partition function from a combi-
natorial argument which proffers several advantages over
the earlier purely functional treatment [12]. In particular,
this interpretation enables a simple and exact determina-
tion of the expected occupancies of the energy levels in
any of the ensembles. This allows the usual thermody-
namic functions to be expressed exactly and succinctly,
not just the partition function. Additionally, the method
is related to the permutational decomposition of the liq-
uid 4He partition function proposed by Feynman [19,20].
Previously, we have used this correspondence to specify
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partition functions for isotopic nuclear systems [21]. In
this paper, the correspondence enables as a new result an
exact determination of the microcanonical partition func-
tion.

2 The partition function for identical bosons
or fermions

In statistical mechanics the partition function entirely
specifies the thermodynamics, so our first priority is to de-
termine a method of computing the partition function in
the various ensembles. We begin by considering the grand
canonical partition function, and develop a combinatorial
method of extracting the canonical and microcanonical
partition functions from the larger ensemble. In the pro-
cess we develop exact expressions for the expected occu-
pation of the energy levels in all three ensembles.

2.1 Grand canonical partition function

In the grand canonical ensemble, where the particle num-
ber and energy are unconstrained, the partition function
Z for a system of bosons occupying energy levels εk with
degeneracy gk is given by

lnZ = −
∑
j≥0

gj ln
(

1− e(µ−εj)/kBT
)
, (1)

where µ is the chemical potential. Let us think of this as
a sum either over canonical Zn or microcanonical Zn,E
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partition functions, i.e.

Z =
∑
n

znZn =
∑
n,E

znwEZn,E, (2)

where the fugacity z is given by z = exp{µ/kBT} and
w = exp{−1/kBT}. Expanding equation (1) as a power
series in z, w yields

lnZ =
∞∑
j=0

gj

∞∑
k=1

zk

k
wkεj

=
∞∑
k=1

zkxk =
∞∑
k=1

∞∑
j=0

zkwkεjxjk,

(3)

where we have introduced xjk = gj/k and xk =∑
j w

kεjxjk for reasons which will become clear shortly.

If we exponentiate and Taylor expand equation (3) we see
that

Z =
∞∑

π01=0

(zwε0x01)π01

π01!

∞∑
π02=0

(z2w2ε0x02)π02

π02!
× · · ·

=
∑
{πjk}

∏
jk

(zkwkεjxjk)πjk

πjk!
, (4)

where πjk ≥ 0.
Notice that the exponents of w, z in equation (4) are

simple functions of {πjk}. Since the exponent of w in the
grand canonical partition function is the total energy E
in the particular microcanonical component, the exponent
of w,

∑
k kεjπjk should be equal to the energy E for that

particular state {πjk}. This E =
∑
j njεj, where nj is the

number of particles in energy state j, so the state π is
related to n by

nj =
∑
k

kπjk. (5)

Combinatorially speaking, πjk counts collections of k par-
ticles in the jth energy state. In fact, {πjk : j fixed} is
simply a cycle class decomposition of a permutation of
the nj particles in the jth energy level. To see this, con-
sider the part of the grand canonical partition function
due to energy level j, namely the number of states of a
system with nj bosons in a level with degeneracy gj,(

nj + gj − 1

nj

)
=

∑
{πjk:j fixed}

∏
k

1

πjk!

(gj
k

)πjk
=

1

nj !

∑
p∈Snj

∏
k

g
πjk(p)
j ·

(6)

Here we see that
(
nj+gj−1

nj

)
can be described in two

ways. The first is just the isolated contribution from the
above grand canonical partition function. The second is a
sum over permutations of the nj particles, where πjk(p)
is the number of k-cycles in the permutation p of nj .

The equivalence of these two expression is due to Cauchy
and Sylvester [22].

Feynman considered such permutations in the conden-
sation of liquid 4He [20] and was able to obtain a form
for the partition function by expanding the symmetrized
density matrix as a sum over such permutations. Specif-
ically, the sum πk =

∑
j πjk, the total number of cycles

of length k, figures prominently in Feynman’s approach.
Such permutational decomposing of the partition func-
tion has also been useful in our research on isotopic nu-
clear systems [21], where the dual requirement of proton
and neutron conservation was considered as restricting the
permutational states to have been colored in a particular
way. Here we can accomplish a similar interpretation by
coloring the clusters which form according to the energy
levels they reside in. Parallels of permutation problems
with cluster yields were also noted in [17,18].

Since πjk has a combinatorial interpretation and is
related to nj , it is important to obtain expectation val-
ues of it. This is possible since each term of equation (4)
can be interpreted as an unnormalized probability for the
state {πjk}, the normalization being simply the parti-
tion function. Equation (4) then suggests we can eval-
uate such expectation values of πjk by taking various
derivatives of the partition function. More specifically, it
is true that 〈πjk〉 = (xjk/Z)(∂Z/∂xjk) and 〈πjk(πlm −
δjk,lm)〉 = (xjkxlm/Z)(∂2Z/∂xjk∂xlm), where 〈·〉 denotes
a grand canonical ensemble average. Now according to
equation (3), Z = exp

∑
jk z

kwkεjxjk, so that

∂Z

∂xjk
= zkwkεjZ(x). (7)

We then see that

〈πjk〉 = zkwkεjxjk, (8)

〈πjk(πlm − δjk,lm)〉 = zk+mwkεj+mεlxjkxlm. (9)

We can now “solve” the grand canonical partition function
now by using the combinatorial interpretation to spec-
ify w, z, i.e. by applying the constraints n =

∑
j〈nj〉 =∑

jk k〈πjk〉, E =
∑
j〈nj〉εj =

∑
jk k〈πjk〉εj .

The analysis illustrated above for a system of bosons
applies equally well to a system of fermions. In this case,
the appropriate partition function is

lnZ =
∑
j

gj ln(1 + e(µ−εj)/kBT ). (10)

Expanding this yields equation (3) with xjk =
(−1)k+1gj/k. The fact that xjk can be negative means
that the combinatorial interpretation is somewhat sus-
pect, since some contributions to the partition function
are negative. Nevertheless, the mathematics is sound and
expectation values of 〈nj〉 can be computed correctly by
the same technique used above. This fermionic case will
be discussed in detail in another paper.
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2.2 Canonical partition function

We can obtain the canonical partition function from the
grand canonical partition function by making restrictions
on the sum appearing in equation (4), i.e. if we restrict
the sum to terms where n =

∑
jk kπjk we will obtain the

canonical partition function. We could simplify some of
the computations by defining πk =

∑
j πjk, so that the

states are described by {πk} where
∑
k kπk = n. Mathe-

matically speaking, such vectors {πk} describe partitions
of the integer n [22], where πk is the number of time k ap-
pears in such a partition. However, sometimes it is more
convenient to work instead with πjk.

Let us define π(n) = {πjk :
∑
jk kπjk = n}. Then the

canonical partition function is given by

Zn(x) =
∑
π(n)

∏
k>0

(wkεjxjk)πjk

πjk!
· (11)

Since
∑
jk kπjk = n for each state in the ensemble, it is

true that
∑
jk k〈πjk〉n = n, where 〈·〉n denotes a canoni-

cal ensemble average. The canonical ensemble average for
πjk can be computed by taking a derivative of the par-
tition function 〈πjk〉n = (xjk/Zn)(∂Zn/∂xjk) as can be
seen from equation (11). In terms of the canonical parti-
tion functions, the canonical constraint can be rewritten
then as

nZn(x) =
n∑
k=1

k
∑
j≥0

xjk
∂Zn

∂xjk
· (12)

If we could relate ∂Zn/∂xjk to Z1(x), . . . , Zn−1(x) then
the above identity would imply a recursive method for
computing Zn(x).

In fact ∂Zn/∂xjk is precisely proportional to a par-
ticular partition function as can be seen by combining
equation (7) and equation (2), yielding

∂Zn

∂xjk
= wkεjZn−k(x). (13)

So the identity given in equation (12) is in fact a recursion
for construction the partition function:

nZn(x) =
∑
jk

kxjkw
kεjZn−k(x) =

∑
k

kxkZn−k(x),
(14)

with Z0(x) = 1 as the anchor for the recursion. The ex-
pectation values for πjk are simply related to the partition
functions:

〈πjk〉n = wkεjxjk
Zn−k(x)

Zn(x)
, (15)

〈πjk(πlm − δjk,lm)〉n = wkεj+mεlxjkxlm
Zn−k−m(x)

Zn(x)
·

(16)

2.3 Microcanonical partition function

A similar combinatorial argument can extract the micro-
canonical partition function from the canonical or grand
canonical partition function. Let us define π(n,E) =
{πjk :

∑
jk kπjk = n,

∑
jk kεjπjk = E}. Then

Zn,E(x) =
∑
π(n,E)

∏
jk

x
πjk
jk

πjk!
· (17)

The partition function can now be developed by recursion
by noting that

〈πjk〉n,E = xjk
Zn−k,E−kεj (x)

Zn,E(x)
, (18)

〈πjk(πlm−δjk,lm)〉n,E = xjkxlm
Zn−k−m,E−kεj−mεl(x)

Zn(x)
,

(19)

and applying the identity
∑
jk k〈πjk〉n,E = n, yielding

nZn,E(x) =
∑
jk

kxjkZn−k,E−kεj (x), (20)

with Z0,E(x) = δ0,E .
A similar situation arises in models of nuclear frag-

mentation, where there is also two constraints, namely
the conservation of proton and neutron number, in which
case [21] it is useful to restrict the ensemble by summing
over isotopes or isobars. Then the existence of permuta-
tional Cauchy identities simplified the resulting partition
functions. In this case the same kind of mechanism also
applies. We can sum over the energy states and arrive
at the πk cluster representation of the states. Or we can
sum over the cluster sizes and arrive at the nj occupation
number representation. In each case, the weight retains its
form and the analysis in the restricted space is identical
or nearly identical as in the large space.

3 Application to the harmonic oscillator

Having the partition function now allows us to compute
the thermodynamics in the traditional manner. For the
case of particles moving in a d dimensional isotropic har-
monic potential, gj and εj can be evaluated directly. The

Hamiltonian for the system is given by Ĥ =
∑d
i=1 p

2
i /2m+

mω2
∑d
i=1 q

2
i /2 where (qi, pi) is the position and momen-

tum in the ith direction. So H =
∑
iHi where Hi is

the Hamiltonian for a one-dimensional oscillator acting
on (qi, pi). Of course Hiψn(qi) = (n + 1/2)~ωψn(qi),
and by separation of variables Hψn1, ... , nd = (n1 +
· · · + nd + d/2)~ωψn1,... ,nd . If we write this as simply
εj = (j + d/2)~ω, we see that the jth energy level has
a degeneracy gj based on the number of ways one can
write j as an ordered sum of d nonnegative integers, i.e.
j = n1 + . . . + nd. In combinatorics this is known as
a d-composition of j, and there are gj =

(
j+d−1
j

)
ways



284 The European Physical Journal B

Fig. 1. The specific heat and ground state occupation in three dimensions in the grand canonical, canonical and microcanonical
ensembles for a system of 100 particles. The curves become nearly identical for larger groups of particles.

of doing this. Substituting this into xk = (1/k)
∑
j gjw

kεj

yields

xk =
1

k

∞∑
j=0

(
j + d− 1

j

)
xk(j+d/2) =

1

k

xkd/2

(1− xk)d
,

(21)

where x = exp{−~ω/kBT} and we have applied the neg-

ative binomial identity (1 − x)−d =
∑
n≥0 x

n
(
n+d−1
n

)
.

3.1 Canonical thermodynamics

We can now compute the canonical partition function for
the harmonic oscillator recursively using equation (12).
Of interest is the fact that in one dimension the recur-
sion yields a particularly simple form due to a partition
theorem of Cayley (cf. [22], 209), namely: Zn,d=1(x) =

xn/2/((1 − x)(1 − x2) · · · (1 − xn)). This partition func-
tion was investigated in a different context by Mekjian
and Lee [23]. In two and higher dimensions, the partition
function does not have a simple closed form, but can be
computed by the above recursion.

Having obtained the partition function we can com-
pute any thermodynamic function of interest by a judi-
cious use of partial derivatives. For example, in the canoni-
cal ensemble, the internal energy U = kBT

2(∂/∂T )V lnZn
and the specific heat CV = (∂U/∂T )V for a group of
bosons are given by

U

kBT
=
∑
k>0

T

xk

∂xk

∂T
〈πk〉n, (22)

CV

kB
=

2U

T
+

[∑
k>0

(
T 2

xk

∂2xk

∂T 2
−

(
T

xk

∂xk

∂T

)2
)
〈πk〉n

+
∑
jk

T

xj

∂xj

∂T

T

xk

∂xk

∂T
(〈πjπk〉n − 〈πj〉n〈πk〉n)

]
.

(23)

The pressure P = kBT (∂/∂V )T lnZn and the incompress-
ibility 1/κT = −V (∂P/∂V )T can be computed in a similar
fashion. For the harmonic oscillator, the partial derivatives
of xk with respect to T are readily determined. The partial
derivatives with respect to V can also be determined, once
an appropriate volume is specified. Since ~ω determines
the size of the trap, ~ω determines the volume. Assuming
h2/2mλ2 ≈ mω2λ2/2 where λ is a particle’s wavelength
we see that ~ω ∝ V −2/d.

For computational purposes, the above expressions
are concise and powerful, but for understanding the
source of the phase transition, one needs to rewrite
the above expressions in terms of the occupancies of
the levels. Since Zn =

∑
n Zn exp{−

∑
j nj/kBT} it

can be shown that U =
∑
j〈nj〉nεj , and that CV =∑

jk (〈njnk〉n − 〈nj〉n〈nk〉n) εjεk/(kBT
2). As the critical

point is marked by a peak in the specific heat, from the
above expression its source must be due to large fluctu-
ations in the occupation numbers. The expected occupa-
tion numbers can be inferred from equations (5, 15, 16),
yielding

〈nj〉n = gj
∑
k

wkεj
Zn−k(x)

Zn(x)
, (24)

〈njnk〉n = δjkgj
∑
m

mwmεj
Zn−m(x)

Zn(x)

+ gjgk
∑
lm

wlεj+mεk
Zn−l−m(x)

Zn(x)
,

(25)

and allow the expected occupation and its fluctuation to
be computed readily.

3.2 Microcanonical thermodynamics

In the microcanonical ensemble, the temperature is de-
fined by T = (∂E/∂S)n,V , and this allows us to compute
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the thermodynamic functions, e.g. for the harmonic oscil-
lator

CV = −
(Sn,E+~ω − Sn,E)(Sn,E − Sn,E−~ω)

Sn,E−~ω − 2Sn,E + Sn,E+~ω
,

(26)

where Sn,E = logZn,E . Relating the thermodynamics to
the occupancies of the levels is more difficult than in the
canonical case, since the temperature is not an indepen-
dent parameter.

4 Discussion and conclusion

As an application of the above techniques, we display the
thermodynamics of particles in a harmonic trap in the
three ensembles. The specific heat (Fig. 1a) and the oc-
cupation of the ground state (Fig. 1b) are substantially
in agreement in all three ensembles, confirming the essen-
tial validity of the use of the different ensembles even for
such small groups of particles. The finite size effects are
however measurable, and should not be completely dis-
counted, especially in smaller systems.

In summary, we have introduced a combinatorial ap-
proach to computing thermodynamic functions in systems
of identical bosons. It is ideally suited to systems in which
the energy levels are separated by integral multiples of
some fundamental energy, such as in the harmonic oscilla-
tor (εj = j~ω) and the rigid rotator (εj = j(j + 1)~2/2I).
Such techniques can also be applied to groups of identi-
cal fermions, which has applications to the nuclear shell
model at finite temperatures.

This work was supported by Department of Energy Grants
DE-FG02-95ER40940 and DE-FG02-96ER40987.
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